scipy.sparse.dia_array#

class scipy.sparse.dia_array(arg1, shape=None, dtype=None, copy=False)[source]#

Sparse array with DIAgonal storage.

This can be instantiated in several ways:
dia_array(D)

where D is a 2-D ndarray

dia_array(S)

with another sparse array or matrix S (equivalent to S.todia())

dia_array((M, N), [dtype])

to construct an empty array with shape (M, N), dtype is optional, defaulting to dtype=’d’.

dia_array((data, offsets), shape=(M, N))

where the data[k,:] stores the diagonal entries for diagonal offsets[k] (See example below)

Notes

Sparse arrays can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Examples

>>> import numpy as np
>>> from scipy.sparse import dia_array
>>> dia_array((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
       [0, 0, 0, 0],
       [0, 0, 0, 0]], dtype=int8)
>>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
>>> offsets = np.array([0, -1, 2])
>>> dia_array((data, offsets), shape=(4, 4)).toarray()
array([[1, 0, 3, 0],
       [1, 2, 0, 4],
       [0, 2, 3, 0],
       [0, 0, 3, 4]])
>>> from scipy.sparse import dia_array
>>> n = 10
>>> ex = np.ones(n)
>>> data = np.array([ex, 2 * ex, ex])
>>> offsets = np.array([-1, 0, 1])
>>> dia_array((data, offsets), shape=(n, n)).toarray()
array([[2., 1., 0., ..., 0., 0., 0.],
       [1., 2., 1., ..., 0., 0., 0.],
       [0., 1., 2., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 2., 1., 0.],
       [0., 0., 0., ..., 1., 2., 1.],
       [0., 0., 0., ..., 0., 1., 2.]])
Attributes:
dtypedtype

Data type of the array

shape2-tuple

The shape of the array.

ndimint

Number of dimensions (this is always 2)

nnz

Number of stored values, including explicit zeros.

size

Number of stored values.

data

DIA format data array of the array

offsets

DIA format offset array of the array

T

Transpose.

Methods

__len__()

arcsin()

Element-wise arcsin.

arcsinh()

Element-wise arcsinh.

arctan()

Element-wise arctan.

arctanh()

Element-wise arctanh.

asformat(format[, copy])

Return this array/matrix in the passed format.

asfptype()

Upcast array/matrix to a floating point format (if necessary)

astype(dtype[, casting, copy])

Cast the array/matrix elements to a specified type.

ceil()

Element-wise ceil.

conj([copy])

Element-wise complex conjugation.

conjugate([copy])

Element-wise complex conjugation.

copy()

Returns a copy of this array/matrix.

count_nonzero()

Number of non-zero entries, equivalent to

deg2rad()

Element-wise deg2rad.

diagonal([k])

Returns the kth diagonal of the array/matrix.

dot(other)

Ordinary dot product

expm1()

Element-wise expm1.

floor()

Element-wise floor.

getH()

Return the Hermitian transpose of this array/matrix.

get_shape()

Get shape of a sparse array/matrix.

getcol(j)

Returns a copy of column j of the array/matrix, as an (m x 1) sparse array/matrix (column vector).

getformat()

Sparse array/matrix storage format.

getmaxprint()

Maximum number of elements to display when printed.

getnnz([axis])

Number of stored values, including explicit zeros.

getrow(i)

Returns a copy of row i of the array/matrix, as a (1 x n) sparse array/matrix (row vector).

log1p()

Element-wise log1p.

maximum(other)

Element-wise maximum between this and another array/matrix.

mean([axis, dtype, out])

Compute the arithmetic mean along the specified axis.

minimum(other)

Element-wise minimum between this and another array/matrix.

multiply(other)

Point-wise multiplication by another array/matrix.

nonzero()

Nonzero indices of the array/matrix.

power(n[, dtype])

This function performs element-wise power.

rad2deg()

Element-wise rad2deg.

reshape(self, shape[, order, copy])

Gives a new shape to a sparse array/matrix without changing its data.

resize(*shape)

Resize the array/matrix in-place to dimensions given by shape

rint()

Element-wise rint.

set_shape(shape)

See reshape.

setdiag(values[, k])

Set diagonal or off-diagonal elements of the array/matrix.

sign()

Element-wise sign.

sin()

Element-wise sin.

sinh()

Element-wise sinh.

sqrt()

Element-wise sqrt.

sum([axis, dtype, out])

Sum the array/matrix elements over a given axis.

tan()

Element-wise tan.

tanh()

Element-wise tanh.

toarray([order, out])

Return a dense ndarray representation of this sparse array/matrix.

tobsr([blocksize, copy])

Convert this array/matrix to Block Sparse Row format.

tocoo([copy])

Convert this array/matrix to COOrdinate format.

tocsc([copy])

Convert this array/matrix to Compressed Sparse Column format.

tocsr([copy])

Convert this array/matrix to Compressed Sparse Row format.

todense([order, out])

Return a dense representation of this sparse array/matrix.

todia([copy])

Convert this array/matrix to sparse DIAgonal format.

todok([copy])

Convert this array/matrix to Dictionary Of Keys format.

tolil([copy])

Convert this array/matrix to List of Lists format.

trace([offset])

Returns the sum along diagonals of the sparse array/matrix.

transpose([axes, copy])

Reverses the dimensions of the sparse array/matrix.

trunc()

Element-wise trunc.

__mul__