scipy.cluster.hierarchy.is_monotonic#
- scipy.cluster.hierarchy.is_monotonic(Z)[source]#
Return True if the linkage passed is monotonic.
The linkage is monotonic if for every cluster and t joined, the distance between them is no less than the distance between any previously joined clusters.
- Parameters:
- Zndarray
The linkage matrix to check for monotonicity.
- Returns:
- bbool
A boolean indicating whether the linkage is monotonic.
See also
linkage
for a description of what a linkage matrix is.
Examples
>>> from scipy.cluster.hierarchy import median, ward, is_monotonic >>> from scipy.spatial.distance import pdist
By definition, some hierarchical clustering algorithms - such as
scipy.cluster.hierarchy.ward
- produce monotonic assignments of samples to clusters; however, this is not always true for other hierarchical methods - e.g.scipy.cluster.hierarchy.median
.Given a linkage matrix
Z
(as the result of a hierarchical clustering method) we can test programmatically whether it has the monotonicity property or not, usingscipy.cluster.hierarchy.is_monotonic
:>>> X = [[0, 0], [0, 1], [1, 0], ... [0, 4], [0, 3], [1, 4], ... [4, 0], [3, 0], [4, 1], ... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X)) >>> Z array([[ 0. , 1. , 1. , 2. ], [ 3. , 4. , 1. , 2. ], [ 6. , 7. , 1. , 2. ], [ 9. , 10. , 1. , 2. ], [ 2. , 12. , 1.29099445, 3. ], [ 5. , 13. , 1.29099445, 3. ], [ 8. , 14. , 1.29099445, 3. ], [11. , 15. , 1.29099445, 3. ], [16. , 17. , 5.77350269, 6. ], [18. , 19. , 5.77350269, 6. ], [20. , 21. , 8.16496581, 12. ]]) >>> is_monotonic(Z) True
>>> Z = median(pdist(X)) >>> Z array([[ 0. , 1. , 1. , 2. ], [ 3. , 4. , 1. , 2. ], [ 9. , 10. , 1. , 2. ], [ 6. , 7. , 1. , 2. ], [ 2. , 12. , 1.11803399, 3. ], [ 5. , 13. , 1.11803399, 3. ], [ 8. , 15. , 1.11803399, 3. ], [11. , 14. , 1.11803399, 3. ], [18. , 19. , 3. , 6. ], [16. , 17. , 3.5 , 6. ], [20. , 21. , 3.25 , 12. ]]) >>> is_monotonic(Z) False
Note that this method is equivalent to just verifying that the distances in the third column of the linkage matrix appear in a monotonically increasing order.