scipy.cluster.hierarchy.cophenet#

scipy.cluster.hierarchy.cophenet(Z, Y=None)[source]#

Calculate the cophenetic distances between each observation in the hierarchical clustering defined by the linkage Z.

Suppose p and q are original observations in disjoint clusters s and t, respectively and s and t are joined by a direct parent cluster u. The cophenetic distance between observations i and j is simply the distance between clusters s and t.

Parameters:
Zndarray

The hierarchical clustering encoded as an array (see linkage function).

Yndarray (optional)

Calculates the cophenetic correlation coefficient c of a hierarchical clustering defined by the linkage matrix Z of a set of \(n\) observations in \(m\) dimensions. Y is the condensed distance matrix from which Z was generated.

Returns:
cndarray

The cophentic correlation distance (if Y is passed).

dndarray

The cophenetic distance matrix in condensed form. The \(ij\) th entry is the cophenetic distance between original observations \(i\) and \(j\).

See also

linkage

for a description of what a linkage matrix is.

scipy.spatial.distance.squareform

transforming condensed matrices into square ones.

Examples

>>> from scipy.cluster.hierarchy import single, cophenet
>>> from scipy.spatial.distance import pdist, squareform

Given a dataset X and a linkage matrix Z, the cophenetic distance between two points of X is the distance between the largest two distinct clusters that each of the points:

>>> X = [[0, 0], [0, 1], [1, 0],
...      [0, 4], [0, 3], [1, 4],
...      [4, 0], [3, 0], [4, 1],
...      [4, 4], [3, 4], [4, 3]]

X corresponds to this dataset

x x    x x
x        x

x        x
x x    x x
>>> Z = single(pdist(X))
>>> Z
array([[ 0.,  1.,  1.,  2.],
       [ 2., 12.,  1.,  3.],
       [ 3.,  4.,  1.,  2.],
       [ 5., 14.,  1.,  3.],
       [ 6.,  7.,  1.,  2.],
       [ 8., 16.,  1.,  3.],
       [ 9., 10.,  1.,  2.],
       [11., 18.,  1.,  3.],
       [13., 15.,  2.,  6.],
       [17., 20.,  2.,  9.],
       [19., 21.,  2., 12.]])
>>> cophenet(Z)
array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
       2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.])

The output of the scipy.cluster.hierarchy.cophenet method is represented in condensed form. We can use scipy.spatial.distance.squareform to see the output as a regular matrix (where each element ij denotes the cophenetic distance between each i, j pair of points in X):

>>> squareform(cophenet(Z))
array([[0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
       [1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
       [1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
       [2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.],
       [2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.],
       [2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.],
       [2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.],
       [2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.],
       [2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.],
       [2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.],
       [2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.],
       [2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]])

In this example, the cophenetic distance between points on X that are very close (i.e., in the same corner) is 1. For other pairs of points is 2, because the points will be located in clusters at different corners - thus, the distance between these clusters will be larger.