minimize(method=’COBYLA’)#
- scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
 Minimize a scalar function of one or more variables using the Constrained Optimization BY Linear Approximation (COBYLA) algorithm.
See also
For documentation for the rest of the parameters, see
scipy.optimize.minimize- Options:
 - ——-
 - rhobegfloat
 Reasonable initial changes to the variables.
- tolfloat
 Final accuracy in the optimization (not precisely guaranteed). This is a lower bound on the size of the trust region.
- dispbool
 Set to True to print convergence messages. If False, verbosity is ignored as set to 0.
- maxiterint
 Maximum number of function evaluations.
- catolfloat
 Tolerance (absolute) for constraint violations