scipy.special.roots_gegenbauer#
- scipy.special.roots_gegenbauer(n, alpha, mu=False)[source]#
 Gauss-Gegenbauer quadrature.
Compute the sample points and weights for Gauss-Gegenbauer quadrature. The sample points are the roots of the nth degree Gegenbauer polynomial, \(C^{\alpha}_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-1, 1]\) with weight function \(w(x) = (1 - x^2)^{\alpha - 1/2}\). See 22.2.3 in [AS] for more details.
- Parameters:
 - nint
 quadrature order
- alphafloat
 alpha must be > -0.5
- mubool, optional
 If True, return the sum of the weights, optional.
- Returns:
 - xndarray
 Sample points
- wndarray
 Weights
- mufloat
 Sum of the weights
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.