scipy.special.roots_chebyt#
- scipy.special.roots_chebyt(n, mu=False)[source]#
 Gauss-Chebyshev (first kind) quadrature.
Computes the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree Chebyshev polynomial of the first kind, \(T_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-1, 1]\) with weight function \(w(x) = 1/\sqrt{1 - x^2}\). See 22.2.4 in [AS] for more details.
- Parameters:
 - nint
 quadrature order
- mubool, optional
 If True, return the sum of the weights, optional.
- Returns:
 - xndarray
 Sample points
- wndarray
 Weights
- mufloat
 Sum of the weights
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.