scipy.special.eval_sh_chebyt#
- scipy.special.eval_sh_chebyt(n, x, out=None) = <ufunc 'eval_sh_chebyt'>#
 Evaluate shifted Chebyshev polynomial of the first kind at a point.
These polynomials are defined as
\[T_n^*(x) = T_n(2x - 1)\]where \(T_n\) is a Chebyshev polynomial of the first kind. See 22.5.14 in [AS] for details.
- Parameters:
 - narray_like
 Degree of the polynomial. If not an integer, the result is determined via the relation to
eval_chebyt.- xarray_like
 Points at which to evaluate the shifted Chebyshev polynomial
- outndarray, optional
 Optional output array for the function values
- Returns:
 - Tscalar or ndarray
 Values of the shifted Chebyshev polynomial
See also
roots_sh_chebytroots and quadrature weights of shifted Chebyshev polynomials of the first kind
sh_chebytshifted Chebyshev polynomial object
eval_chebytevaluate Chebyshev polynomials of the first kind
numpy.polynomial.chebyshev.ChebyshevChebyshev series
References
[AS]Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.