scipy.sparse.linalg.cg#
- scipy.sparse.linalg.cg(A, b, x0=None, tol=1e-05, maxiter=None, M=None, callback=None, atol=None)[source]#
 Use Conjugate Gradient iteration to solve
Ax = b.- Parameters:
 - A{sparse matrix, ndarray, LinearOperator}
 The real or complex N-by-N matrix of the linear system.
Amust represent a hermitian, positive definite matrix. Alternatively,Acan be a linear operator which can produceAxusing, e.g.,scipy.sparse.linalg.LinearOperator.- bndarray
 Right hand side of the linear system. Has shape (N,) or (N,1).
- Returns:
 - xndarray
 The converged solution.
- infointeger
 - Provides convergence information:
 0 : successful exit >0 : convergence to tolerance not achieved, number of iterations <0 : illegal input or breakdown
- Other Parameters:
 - x0ndarray
 Starting guess for the solution.
- tol, atolfloat, optional
 Tolerances for convergence,
norm(residual) <= max(tol*norm(b), atol). The default foratolis'legacy', which emulates a different legacy behavior.Warning
The default value for atol will be changed in a future release. For future compatibility, specify atol explicitly.
- maxiterinteger
 Maximum number of iterations. Iteration will stop after maxiter steps even if the specified tolerance has not been achieved.
- M{sparse matrix, ndarray, LinearOperator}
 Preconditioner for A. The preconditioner should approximate the inverse of A. Effective preconditioning dramatically improves the rate of convergence, which implies that fewer iterations are needed to reach a given error tolerance.
- callbackfunction
 User-supplied function to call after each iteration. It is called as callback(xk), where xk is the current solution vector.
Examples
>>> import numpy as np >>> from scipy.sparse import csc_matrix >>> from scipy.sparse.linalg import cg >>> P = np.array([[4, 0, 1, 0], ... [0, 5, 0, 0], ... [1, 0, 3, 2], ... [0, 0, 2, 4]]) >>> A = csc_matrix(P) >>> b = np.array([-1, -0.5, -1, 2]) >>> x, exit_code = cg(A, b) >>> print(exit_code) # 0 indicates successful convergence 0 >>> np.allclose(A.dot(x), b) True