scipy.optimize.rosen_der#
- scipy.optimize.rosen_der(x)[source]#
 The derivative (i.e. gradient) of the Rosenbrock function.
- Parameters:
 - xarray_like
 1-D array of points at which the derivative is to be computed.
- Returns:
 - rosen_der(N,) ndarray
 The gradient of the Rosenbrock function at x.
See also
Examples
>>> import numpy as np >>> from scipy.optimize import rosen_der >>> X = 0.1 * np.arange(9) >>> rosen_der(X) array([ -2. , 10.6, 15.6, 13.4, 6.4, -3. , -12.4, -19.4, 62. ])