scipy.fft.ihfft#
- scipy.fft.ihfft(x, n=None, axis=-1, norm=None, overwrite_x=False, workers=None, *, plan=None)[source]#
 Compute the inverse FFT of a signal that has Hermitian symmetry.
- Parameters:
 - xarray_like
 Input array.
- nint, optional
 Length of the inverse FFT, the number of points along transformation axis in the input to use. If n is smaller than the length of the input, the input is cropped. If it is larger, the input is padded with zeros. If n is not given, the length of the input along the axis specified by axis is used.
- axisint, optional
 Axis over which to compute the inverse FFT. If not given, the last axis is used.
- norm{“backward”, “ortho”, “forward”}, optional
 Normalization mode (see
fft). Default is “backward”.- overwrite_xbool, optional
 If True, the contents of x can be destroyed; the default is False. See
fftfor more details.- workersint, optional
 Maximum number of workers to use for parallel computation. If negative, the value wraps around from
os.cpu_count(). Seefftfor more details.- planobject, optional
 This argument is reserved for passing in a precomputed plan provided by downstream FFT vendors. It is currently not used in SciPy.
New in version 1.5.0.
- Returns:
 - outcomplex ndarray
 The truncated or zero-padded input, transformed along the axis indicated by axis, or the last one if axis is not specified. The length of the transformed axis is
n//2 + 1.
Notes
hfft/ihfftare a pair analogous torfft/irfft, but for the opposite case: here, the signal has Hermitian symmetry in the time domain and is real in the frequency domain. So, here, it’shfft, for which you must supply the length of the result if it is to be odd: * even:ihfft(hfft(a, 2*len(a) - 2) == a, within roundoff error, * odd:ihfft(hfft(a, 2*len(a) - 1) == a, within roundoff error.Examples
>>> from scipy.fft import ifft, ihfft >>> import numpy as np >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4]) >>> ifft(spectrum) array([1.+0.j, 2.+0.j, 3.+0.j, 4.+0.j, 3.+0.j, 2.+0.j]) # may vary >>> ihfft(spectrum) array([ 1.-0.j, 2.-0.j, 3.-0.j, 4.-0.j]) # may vary