scipy.stats.sem#
- scipy.stats.sem(a, axis=0, ddof=1, nan_policy='propagate')[source]#
Compute standard error of the mean.
Calculate the standard error of the mean (or standard error of measurement) of the values in the input array.
- Parameters:
- aarray_like
An array containing the values for which the standard error is returned.
- axisint or None, optional
Axis along which to operate. Default is 0. If None, compute over the whole array a.
- ddofint, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust for bias in limited samples relative to the population estimate of variance. Defaults to 1.
- nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):
‘propagate’: returns nan
‘raise’: throws an error
‘omit’: performs the calculations ignoring nan values
- Returns:
- sndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
The default value for ddof is different to the default (0) used by other ddof containing routines, such as np.std and np.nanstd.
Examples
Find standard error along the first axis:
>>> import numpy as np >>> from scipy import stats >>> a = np.arange(20).reshape(5,4) >>> stats.sem(a) array([ 2.8284, 2.8284, 2.8284, 2.8284])
Find standard error across the whole array, using n degrees of freedom:
>>> stats.sem(a, axis=None, ddof=0) 1.2893796958227628