scipy.special.factorial2#

scipy.special.factorial2(n, exact=False)[source]#

Double factorial.

This is the factorial with every second value skipped. E.g., 7!! = 7 * 5 * 3 * 1. It can be approximated numerically as:

n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi)  n odd
    = 2**(n/2) * (n/2)!                           n even
Parameters:
nint or array_like

Calculate n!!. Arrays are only supported with exact set to False. If n < -1, the return value is 0. Otherwise if n <= 0, the return value is 1.

exactbool, optional

The result can be approximated rapidly using the gamma-formula above (default). If exact is set to True, calculate the answer exactly using integer arithmetic.

Returns:
nfffloat or int

Double factorial of n, as an int or a float depending on exact.

Examples

>>> from scipy.special import factorial2
>>> factorial2(7, exact=False)
array(105.00000000000001)
>>> factorial2(7, exact=True)
105