scipy.signal.detrend#

scipy.signal.detrend(data, axis=-1, type='linear', bp=0, overwrite_data=False)[source]#

Remove linear trend along axis from data.

Parameters:
dataarray_like

The input data.

axisint, optional

The axis along which to detrend the data. By default this is the last axis (-1).

type{‘linear’, ‘constant’}, optional

The type of detrending. If type == 'linear' (default), the result of a linear least-squares fit to data is subtracted from data. If type == 'constant', only the mean of data is subtracted.

bparray_like of ints, optional

A sequence of break points. If given, an individual linear fit is performed for each part of data between two break points. Break points are specified as indices into data. This parameter only has an effect when type == 'linear'.

overwrite_databool, optional

If True, perform in place detrending and avoid a copy. Default is False

Returns:
retndarray

The detrended input data.

Examples

>>> import numpy as np
>>> from scipy import signal
>>> rng = np.random.default_rng()
>>> npoints = 1000
>>> noise = rng.standard_normal(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (signal.detrend(x) - noise).max()
0.06  # random