scipy.linalg.rq#
- scipy.linalg.rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True)[source]#
Compute RQ decomposition of a matrix.
Calculate the decomposition
A = R Q
where Q is unitary/orthogonal and R upper triangular.- Parameters:
- a(M, N) array_like
Matrix to be decomposed
- overwrite_abool, optional
Whether data in a is overwritten (may improve performance)
- lworkint, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size is computed.
- mode{‘full’, ‘r’, ‘economic’}, optional
Determines what information is to be returned: either both Q and R (‘full’, default), only R (‘r’) or both Q and R but computed in economy-size (‘economic’, see Notes).
- check_finitebool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
- Returns:
- Rfloat or complex ndarray
Of shape (M, N) or (M, K) for
mode='economic'
.K = min(M, N)
.- Qfloat or complex ndarray
Of shape (N, N) or (K, N) for
mode='economic'
. Not returned ifmode='r'
.
- Raises:
- LinAlgError
If decomposition fails.
Notes
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf, sorgrq, dorgrq, cungrq and zungrq.
If
mode=economic
, the shapes of Q and R are (K, N) and (M, K) instead of (N,N) and (M,N), withK=min(M,N)
.Examples
>>> import numpy as np >>> from scipy import linalg >>> rng = np.random.default_rng() >>> a = rng.standard_normal((6, 9)) >>> r, q = linalg.rq(a) >>> np.allclose(a, r @ q) True >>> r.shape, q.shape ((6, 9), (9, 9)) >>> r2 = linalg.rq(a, mode='r') >>> np.allclose(r, r2) True >>> r3, q3 = linalg.rq(a, mode='economic') >>> r3.shape, q3.shape ((6, 6), (6, 9))