scipy.linalg.ordqz#
- scipy.linalg.ordqz(A, B, sort='lhp', output='real', overwrite_a=False, overwrite_b=False, check_finite=True)[source]#
QZ decomposition for a pair of matrices with reordering.
- Parameters:
- A(N, N) array_like
2-D array to decompose
- B(N, N) array_like
2-D array to decompose
- sort{callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given an ordered pair
(alpha, beta)
representing the eigenvaluex = (alpha/beta)
, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). For the real matrix pairsbeta
is real whilealpha
can be complex, and for complex matrix pairs bothalpha
andbeta
can be complex. The callable must be able to accept a NumPy array. Alternatively, string parameters may be used:‘lhp’ Left-hand plane (x.real < 0.0)
‘rhp’ Right-hand plane (x.real > 0.0)
‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)
With the predefined sorting functions, an infinite eigenvalue (i.e.,
alpha != 0
andbeta = 0
) is considered to lie in neither the left-hand nor the right-hand plane, but it is considered to lie outside the unit circle. For the eigenvalue(alpha, beta) = (0, 0)
, the predefined sorting functions all return False.- outputstr {‘real’,’complex’}, optional
Construct the real or complex QZ decomposition for real matrices. Default is ‘real’.
- overwrite_abool, optional
If True, the contents of A are overwritten.
- overwrite_bbool, optional
If True, the contents of B are overwritten.
- check_finitebool, optional
If true checks the elements of A and B are finite numbers. If false does no checking and passes matrix through to underlying algorithm.
- Returns:
- AA(N, N) ndarray
Generalized Schur form of A.
- BB(N, N) ndarray
Generalized Schur form of B.
- alpha(N,) ndarray
alpha = alphar + alphai * 1j. See notes.
- beta(N,) ndarray
See notes.
- Q(N, N) ndarray
The left Schur vectors.
- Z(N, N) ndarray
The right Schur vectors.
See also
Notes
On exit,
(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N
, will be the generalized eigenvalues.ALPHAR(j) + ALPHAI(j)*i
andBETA(j),j=1,...,N
are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the jth eigenvalue is real; if positive, then thej``th and ``(j+1)``st eigenvalues are a complex conjugate pair, with ``ALPHAI(j+1)
negative.New in version 0.17.0.
Examples
>>> import numpy as np >>> from scipy.linalg import ordqz >>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) >>> B = np.array([[0, 6, 0, 0], [5, 0, 2, 1], [5, 2, 6, 6], [4, 7, 7, 7]]) >>> AA, BB, alpha, beta, Q, Z = ordqz(A, B, sort='lhp')
Since we have sorted for left half plane eigenvalues, negatives come first
>>> (alpha/beta).real < 0 array([ True, True, False, False], dtype=bool)