scipy.interpolate.Akima1DInterpolator#

class scipy.interpolate.Akima1DInterpolator(x, y, axis=0)[source]#

Akima interpolator

Fit piecewise cubic polynomials, given vectors x and y. The interpolation method by Akima uses a continuously differentiable sub-spline built from piecewise cubic polynomials. The resultant curve passes through the given data points and will appear smooth and natural.

Parameters:
xndarray, shape (m, )

1-D array of monotonically increasing real values.

yndarray, shape (m, …)

N-D array of real values. The length of y along the first axis must be equal to the length of x.

axisint, optional

Specifies the axis of y along which to interpolate. Interpolation defaults to the first axis of y.

See also

PchipInterpolator

PCHIP 1-D monotonic cubic interpolator.

CubicSpline

Cubic spline data interpolator.

PPoly

Piecewise polynomial in terms of coefficients and breakpoints

Notes

New in version 0.14.

Use only for precise data, as the fitted curve passes through the given points exactly. This routine is useful for plotting a pleasingly smooth curve through a few given points for purposes of plotting.

References

[1] A new method of interpolation and smooth curve fitting based

on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4), 589-602.

Attributes:
axis
c
extrapolate
x

Methods

__call__(x[, nu, extrapolate])

Evaluate the piecewise polynomial or its derivative.

derivative([nu])

Construct a new piecewise polynomial representing the derivative.

antiderivative([nu])

Construct a new piecewise polynomial representing the antiderivative.

roots([discontinuity, extrapolate])

Find real roots of the piecewise polynomial.