minimize(method=’Powell’)¶
-
scipy.optimize.
minimize
(fun, x0, args=(), method='Powell', tol=None, callback=None, options={'func': None, 'xtol': 0.0001, 'ftol': 0.0001, 'maxiter': None, 'maxfev': None, 'disp': False, 'direc': None, 'return_all': False}) Minimization of scalar function of one or more variables using the modified Powell algorithm.
See also
For documentation for the rest of the parameters, see
scipy.optimize.minimize
Options: - disp : bool
Set to True to print convergence messages.
- xtol : float
Relative error in solution xopt acceptable for convergence.
- ftol : float
Relative error in
fun(xopt)
acceptable for convergence.- maxiter, maxfev : int
Maximum allowed number of iterations and function evaluations. Will default to
N*1000
, whereN
is the number of variables, if neither maxiter or maxfev is set. If both maxiter and maxfev are set, minimization will stop at the first reached.- direc : ndarray
Initial set of direction vectors for the Powell method.