scipy.stats.tmin¶
- 
scipy.stats.tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate')[source]¶ Compute the trimmed minimum.
This function finds the miminum value of an array a along the specified axis, but only considering values greater than a specified lower limit.
Parameters: - a : array_like
 array of values
- lowerlimit : None or float, optional
 Values in the input array less than the given limit will be ignored. When lowerlimit is None, then all values are used. The default value is None.
- axis : int or None, optional
 Axis along which to operate. Default is 0. If None, compute over the whole array a.
- inclusive : {True, False}, optional
 This flag determines whether values exactly equal to the lower limit are included. The default value is True.
- nan_policy : {‘propagate’, ‘raise’, ‘omit’}, optional
 Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.
Returns: - tmin : float, int or ndarray
 
Examples
>>> from scipy import stats >>> x = np.arange(20) >>> stats.tmin(x) 0
>>> stats.tmin(x, 13) 13
>>> stats.tmin(x, 13, inclusive=False) 14
