scipy.stats.ncf¶
-
scipy.stats.
ncf
= <scipy.stats._continuous_distns.ncf_gen object>[source]¶ A non-central F distribution continuous random variable.
As an instance of the
rv_continuous
class,ncf
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
ncf
is:\[\begin{split}f(x, n_1, n_2, \lambda) = \exp(\frac{\lambda}{2} + \lambda n_1 \frac{x}{2(n_1 x+n_2)}) n_1^{n_1/2} n_2^{n_2/2} x^{n_1/2 - 1} \\ (n_2+n_1 x)^{-(n_1+n_2)/2} \gamma(n_1/2) \gamma(1+n_2/2) \\ \frac{L^{\frac{v_1}{2}-1}_{v_2/2} (-\lambda v_1 \frac{x}{2(v_1 x+v_2)})} {(B(v_1/2, v_2/2) \gamma(\frac{v_1+v_2}{2})}\end{split}\]for \(n_1 > 1\), \(n_2, \lambda > 0\). Here \(n_1\) is the degrees of freedom in the numerator, \(n_2\) the degrees of freedom in the denominator, \(\lambda\) the non-centrality parameter, \(\gamma\) is the logarithm of the Gamma function, \(L_n^k\) is a generalized Laguerre polynomial and \(B\) is the beta function.
ncf
takesdf1
,df2
andnc
as shape parameters.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,ncf.pdf(x, dfn, dfd, nc, loc, scale)
is identically equivalent toncf.pdf(y, dfn, dfd, nc) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import ncf >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> dfn, dfd, nc = 27, 27, 0.416 >>> mean, var, skew, kurt = ncf.stats(dfn, dfd, nc, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(ncf.ppf(0.01, dfn, dfd, nc), ... ncf.ppf(0.99, dfn, dfd, nc), 100) >>> ax.plot(x, ncf.pdf(x, dfn, dfd, nc), ... 'r-', lw=5, alpha=0.6, label='ncf pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = ncf(dfn, dfd, nc) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = ncf.ppf([0.001, 0.5, 0.999], dfn, dfd, nc) >>> np.allclose([0.001, 0.5, 0.999], ncf.cdf(vals, dfn, dfd, nc)) True
Generate random numbers:
>>> r = ncf.rvs(dfn, dfd, nc, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(dfn, dfd, nc, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, dfn, dfd, nc, loc=0, scale=1) Probability density function. logpdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the probability density function. cdf(x, dfn, dfd, nc, loc=0, scale=1) Cumulative distribution function. logcdf(x, dfn, dfd, nc, loc=0, scale=1) Log of the cumulative distribution function. sf(x, dfn, dfd, nc, loc=0, scale=1) Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, dfn, dfd, nc, loc=0, scale=1) Log of the survival function. ppf(q, dfn, dfd, nc, loc=0, scale=1) Percent point function (inverse of cdf
— percentiles).isf(q, dfn, dfd, nc, loc=0, scale=1) Inverse survival function (inverse of sf
).moment(n, dfn, dfd, nc, loc=0, scale=1) Non-central moment of order n stats(dfn, dfd, nc, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(dfn, dfd, nc, loc=0, scale=1) (Differential) entropy of the RV. fit(data, dfn, dfd, nc, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(dfn, dfd, nc), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(dfn, dfd, nc, loc=0, scale=1) Median of the distribution. mean(dfn, dfd, nc, loc=0, scale=1) Mean of the distribution. var(dfn, dfd, nc, loc=0, scale=1) Variance of the distribution. std(dfn, dfd, nc, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, dfn, dfd, nc, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution