scipy.stats.kappa3¶
-
scipy.stats.
kappa3
= <scipy.stats._continuous_distns.kappa3_gen object>[source]¶ Kappa 3 parameter distribution.
As an instance of the
rv_continuous
class,kappa3
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for kappa is:
\[\begin{split}f(x, a) = \begin{cases} a [a + x^a]^{-(a + 1)/a}, &\text{for } x > 0\\ 0.0, &\text{for } x \le 0 \end{cases}\end{split}\]kappa3
takes \(a\) as a shape parameter and \(a > 0\).References
P.W. Mielke and E.S. Johnson, “Three-Parameter Kappa Distribution Maximum Likelihood and Likelihood Ratio Tests”, Methods in Weather Research, 701-707, (September, 1973), http://docs.lib.noaa.gov/rescue/mwr/101/mwr-101-09-0701.pdf
B. Kumphon, “Maximum Entropy and Maximum Likelihood Estimation for the Three-Parameter Kappa Distribution”, Open Journal of Statistics, vol 2, 415-419 (2012) http://file.scirp.org/pdf/OJS20120400011_95789012.pdf
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,kappa3.pdf(x, a, loc, scale)
is identically equivalent tokappa3.pdf(y, a) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import kappa3 >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> a = 1 >>> mean, var, skew, kurt = kappa3.stats(a, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(kappa3.ppf(0.01, a), ... kappa3.ppf(0.99, a), 100) >>> ax.plot(x, kappa3.pdf(x, a), ... 'r-', lw=5, alpha=0.6, label='kappa3 pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = kappa3(a) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = kappa3.ppf([0.001, 0.5, 0.999], a) >>> np.allclose([0.001, 0.5, 0.999], kappa3.cdf(vals, a)) True
Generate random numbers:
>>> r = kappa3.rvs(a, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, a, loc=0, scale=1) Probability density function. logpdf(x, a, loc=0, scale=1) Log of the probability density function. cdf(x, a, loc=0, scale=1) Cumulative distribution function. logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function. sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, a, loc=0, scale=1) Log of the survival function. ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf
— percentiles).isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf
).moment(n, a, loc=0, scale=1) Non-central moment of order n stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(a, loc=0, scale=1) (Differential) entropy of the RV. fit(data, a, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(a, loc=0, scale=1) Median of the distribution. mean(a, loc=0, scale=1) Mean of the distribution. var(a, loc=0, scale=1) Variance of the distribution. std(a, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution