This is documentation for an old release of SciPy (version 1.1.0). Read this page in the documentation of the latest stable release (version 1.15.0).
scipy.stats.erlang¶
-
scipy.stats.
erlang
= <scipy.stats._continuous_distns.erlang_gen object>[source]¶ An Erlang continuous random variable.
As an instance of the
rv_continuous
class,erlang
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.See also
Notes
The Erlang distribution is a special case of the Gamma distribution, with the shape parameter a an integer. Note that this restriction is not enforced by
erlang
. It will, however, generate a warning the first time a non-integer value is used for the shape parameter.Refer to
gamma
for examples.Methods
rvs(a, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, a, loc=0, scale=1) Probability density function. logpdf(x, a, loc=0, scale=1) Log of the probability density function. cdf(x, a, loc=0, scale=1) Cumulative distribution function. logcdf(x, a, loc=0, scale=1) Log of the cumulative distribution function. sf(x, a, loc=0, scale=1) Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, a, loc=0, scale=1) Log of the survival function. ppf(q, a, loc=0, scale=1) Percent point function (inverse of cdf
— percentiles).isf(q, a, loc=0, scale=1) Inverse survival function (inverse of sf
).moment(n, a, loc=0, scale=1) Non-central moment of order n stats(a, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(a, loc=0, scale=1) (Differential) entropy of the RV. fit(data, a, loc=0, scale=1) Parameter estimates for generic data. expect(func, args=(a,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(a, loc=0, scale=1) Median of the distribution. mean(a, loc=0, scale=1) Mean of the distribution. var(a, loc=0, scale=1) Variance of the distribution. std(a, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, a, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution