scipy.sparse.rand¶
-
scipy.sparse.
rand
(m, n, density=0.01, format='coo', dtype=None, random_state=None)[source]¶ Generate a sparse matrix of the given shape and density with uniformly distributed values.
Parameters: - m, n : int
shape of the matrix
- density : real, optional
density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items.
- format : str, optional
sparse matrix format.
- dtype : dtype, optional
type of the returned matrix values.
- random_state : {numpy.random.RandomState, int}, optional
Random number generator or random seed. If not given, the singleton numpy.random will be used.
Returns: - res : sparse matrix
See also
scipy.sparse.random
- Similar function that allows a user-specified random data source.
Notes
Only float types are supported for now.
Examples
>>> from scipy.sparse import rand >>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42) >>> matrix <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> matrix.todense() matrix([[ 0. , 0.59685016, 0.779691 , 0. ], [ 0. , 0. , 0. , 0.44583275], [ 0. , 0. , 0. , 0. ]])