scipy.sparse.dok_matrix¶
-
class
scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)[source]¶ Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
- This can be instantiated in several ways:
- dok_matrix(D)
- with a dense matrix, D
- dok_matrix(S)
- with a sparse matrix, S
- dok_matrix((M,N), [dtype])
- create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.
Examples
>>> import numpy as np >>> from scipy.sparse import dok_matrix >>> S = dok_matrix((5, 5), dtype=np.float32) >>> for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element
Attributes: Methods
asformat(format[, copy])Return this matrix in the passed sparse format. asfptype()Upcast matrix to a floating point format (if necessary) astype(dtype[, casting, copy])Cast the matrix elements to a specified type. clear()conj([copy])Element-wise complex conjugation. conjtransp()Return the conjugate transpose. conjugate([copy])Element-wise complex conjugation. copy()Returns a copy of this matrix. count_nonzero()Number of non-zero entries, equivalent to diagonal([k])Returns the k-th diagonal of the matrix. dot(other)Ordinary dot product fromkeys($type, iterable[, value])Returns a new dict with keys from iterable and values equal to value. get(key[, default])This overrides the dict.get method, providing type checking but otherwise equivalent functionality. getH()Return the Hermitian transpose of this matrix. get_shape()Get shape of a matrix. getcol(j)Returns the j-th column as a (m x 1) DOK matrix. getformat()Format of a matrix representation as a string. getmaxprint()Maximum number of elements to display when printed. getnnz([axis])Number of stored values, including explicit zeros. getrow(i)Returns the i-th row as a (1 x n) DOK matrix. items()keys()maximum(other)Element-wise maximum between this and another matrix. mean([axis, dtype, out])Compute the arithmetic mean along the specified axis. minimum(other)Element-wise minimum between this and another matrix. multiply(other)Point-wise multiplication by another matrix nonzero()nonzero indices pop(k[,d])If key is not found, d is returned if given, otherwise KeyError is raised popitem()2-tuple; but raise KeyError if D is empty. power(n[, dtype])Element-wise power. reshape(self, shape[, order, copy])Gives a new shape to a sparse matrix without changing its data. resize(*shape)Resize the matrix in-place to dimensions given by shapeset_shape(shape)See reshape.setdefault(k[,d])setdiag(values[, k])Set diagonal or off-diagonal elements of the array. sum([axis, dtype, out])Sum the matrix elements over a given axis. toarray([order, out])Return a dense ndarray representation of this matrix. tobsr([blocksize, copy])Convert this matrix to Block Sparse Row format. tocoo([copy])Convert this matrix to COOrdinate format. tocsc([copy])Convert this matrix to Compressed Sparse Column format. tocsr([copy])Convert this matrix to Compressed Sparse Row format. todense([order, out])Return a dense matrix representation of this matrix. todia([copy])Convert this matrix to sparse DIAgonal format. todok([copy])Convert this matrix to Dictionary Of Keys format. tolil([copy])Convert this matrix to LInked List format. transpose([axes, copy])Reverses the dimensions of the sparse matrix. update([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k] values()
