scipy.signal.residuez¶
-
scipy.signal.
residuez
(b, a, tol=0.001, rtype='avg')[source]¶ Compute partial-fraction expansion of b(z) / a(z).
If M is the degree of numerator b and N the degree of denominator a:
b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M) H(z) = ------ = ------------------------------------------ a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)
then the partial-fraction expansion H(z) is defined as:
r[0] r[-1] = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ... (1-p[0]z**(-1)) (1-p[-1]z**(-1))
If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:
r[i] r[i+1] r[i+n-1] -------------- + ------------------ + ... + ------------------ (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use
residue
.Parameters: - b : array_like
Numerator polynomial coefficients.
- a : array_like
Denominator polynomial coefficients.
Returns: - r : ndarray
Residues.
- p : ndarray
Poles.
- k : ndarray
Coefficients of the direct polynomial term.
See also