scipy.signal.lsim¶
-
scipy.signal.
lsim
(system, U, T, X0=None, interp=True)[source]¶ Simulate output of a continuous-time linear system.
Parameters: - system : an instance of the LTI class or a tuple describing the system.
The following gives the number of elements in the tuple and the interpretation:
- 1: (instance of
lti
) - 2: (num, den)
- 3: (zeros, poles, gain)
- 4: (A, B, C, D)
- 1: (instance of
- U : array_like
An input array describing the input at each time T (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. If U = 0 or None, a zero input is used.
- T : array_like
The time steps at which the input is defined and at which the output is desired. Must be nonnegative, increasing, and equally spaced.
- X0 : array_like, optional
The initial conditions on the state vector (zero by default).
- interp : bool, optional
Whether to use linear (True, the default) or zero-order-hold (False) interpolation for the input array.
Returns: - T : 1D ndarray
Time values for the output.
- yout : 1D ndarray
System response.
- xout : ndarray
Time evolution of the state vector.
Notes
If (num, den) is passed in for
system
, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g.s^2 + 3s + 5
would be represented as[1, 3, 5]
).Examples
Simulate a double integrator y’’ = u, with a constant input u = 1
>>> from scipy import signal >>> system = signal.lti([[0., 1.], [0., 0.]], [[0.], [1.]], [[1., 0.]], 0.) >>> t = np.linspace(0, 5) >>> u = np.ones_like(t) >>> tout, y, x = signal.lsim(system, u, t) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y)