scipy.linalg.schur¶
-
scipy.linalg.
schur
(a, output='real', lwork=None, overwrite_a=False, sort=None, check_finite=True)[source]¶ Compute Schur decomposition of a matrix.
The Schur decomposition is:
A = Z T Z^H
where Z is unitary and T is either upper-triangular, or for real Schur decomposition (output=’real’), quasi-upper triangular. In the quasi-triangular form, 2x2 blocks describing complex-valued eigenvalue pairs may extrude from the diagonal.
Parameters: - a : (M, M) array_like
Matrix to decompose
- output : {‘real’, ‘complex’}, optional
Construct the real or complex Schur decomposition (for real matrices).
- lwork : int, optional
Work array size. If None or -1, it is automatically computed.
- overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance).
- sort : {None, callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). Alternatively, string parameters may be used:
'lhp' Left-hand plane (x.real < 0.0) 'rhp' Right-hand plane (x.real > 0.0) 'iuc' Inside the unit circle (x*x.conjugate() <= 1.0) 'ouc' Outside the unit circle (x*x.conjugate() > 1.0)
Defaults to None (no sorting).
- check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: - T : (M, M) ndarray
Schur form of A. It is real-valued for the real Schur decomposition.
- Z : (M, M) ndarray
An unitary Schur transformation matrix for A. It is real-valued for the real Schur decomposition.
- sdim : int
If and only if sorting was requested, a third return value will contain the number of eigenvalues satisfying the sort condition.
Raises: - LinAlgError
Error raised under three conditions:
- The algorithm failed due to a failure of the QR algorithm to compute all eigenvalues
- If eigenvalue sorting was requested, the eigenvalues could not be reordered due to a failure to separate eigenvalues, usually because of poor conditioning
- If eigenvalue sorting was requested, roundoff errors caused the leading eigenvalues to no longer satisfy the sorting condition
See also
rsf2csf
- Convert real Schur form to complex Schur form
Examples
>>> from scipy.linalg import schur, eigvals >>> A = np.array([[0, 2, 2], [0, 1, 2], [1, 0, 1]]) >>> T, Z = schur(A) >>> T array([[ 2.65896708, 1.42440458, -1.92933439], [ 0. , -0.32948354, -0.49063704], [ 0. , 1.31178921, -0.32948354]]) >>> Z array([[0.72711591, -0.60156188, 0.33079564], [0.52839428, 0.79801892, 0.28976765], [0.43829436, 0.03590414, -0.89811411]])
>>> T2, Z2 = schur(A, output='complex') >>> T2 array([[ 2.65896708, -1.22839825+1.32378589j, 0.42590089+1.51937378j], [ 0. , -0.32948354+0.80225456j, -0.59877807+0.56192146j], [ 0. , 0. , -0.32948354-0.80225456j]]) >>> eigvals(T2) array([2.65896708, -0.32948354+0.80225456j, -0.32948354-0.80225456j])
An arbitrary custom eig-sorting condition, having positive imaginary part, which is satisfied by only one eigenvalue
>>> T3, Z3, sdim = schur(A, output='complex', sort=lambda x: x.imag > 0) >>> sdim 1