scipy.linalg.eigvalsh¶
-
scipy.linalg.
eigvalsh
(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1, check_finite=True)[source]¶ Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix.
Find eigenvalues w of matrix a, where b is positive definite:
a v[:,i] = w[i] b v[:,i] v[i,:].conj() a v[:,i] = w[i] v[i,:].conj() b v[:,i] = 1
Parameters: - a : (M, M) array_like
A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed.
- b : (M, M) array_like, optional
A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed.
- lower : bool, optional
Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower)
- turbo : bool, optional
Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None)
- eigvals : tuple (lo, hi), optional
Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and eigenvectors are returned.
- type : int, optional
Specifies the problem type to be solved:
type = 1: a v[:,i] = w[i] b v[:,i]
type = 2: a b v[:,i] = w[i] v[:,i]
type = 3: b a v[:,i] = w[i] v[:,i]
- overwrite_a : bool, optional
Whether to overwrite data in a (may improve performance)
- overwrite_b : bool, optional
Whether to overwrite data in b (may improve performance)
- check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: - w : (N,) float ndarray
The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity.
Raises: - LinAlgError
If eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or hermitian, no error is reported but results will be wrong.
See also
eigh
- eigenvalues and right eigenvectors for symmetric/Hermitian arrays
eigvals
- eigenvalues of general arrays
eigvals_banded
- eigenvalues for symmetric/Hermitian band matrices
eigvalsh_tridiagonal
- eigenvalues of symmetric/Hermitian tridiagonal matrices
Notes
This function does not check the input array for being hermitian/symmetric in order to allow for representing arrays with only their upper/lower triangular parts.
Examples
>>> from scipy.linalg import eigvalsh >>> A = np.array([[6, 3, 1, 5], [3, 0, 5, 1], [1, 5, 6, 2], [5, 1, 2, 2]]) >>> w = eigvalsh(A) >>> w array([-3.74637491, -0.76263923, 6.08502336, 12.42399079])