scipy.fftpack.rfft¶
- 
scipy.fftpack.rfft(x, n=None, axis=-1, overwrite_x=False)[source]¶
- Discrete Fourier transform of a real sequence. - Parameters: - x : array_like, real-valued
- The data to transform. 
- n : int, optional
- Defines the length of the Fourier transform. If n is not specified (the default) then - n = x.shape[axis]. If- n < x.shape[axis], x is truncated, if- n > x.shape[axis], x is zero-padded.
- axis : int, optional
- The axis along which the transform is applied. The default is the last axis. 
- overwrite_x : bool, optional
- If set to true, the contents of x can be overwritten. Default is False. 
 - Returns: - z : real ndarray
- The returned real array contains: - [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd - where: - y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n) j = 0..n-1 
 - See also - Notes - Within numerical accuracy, - y == rfft(irfft(y)).- Both single and double precision routines are implemented. Half precision inputs will be converted to single precision. Non floating-point inputs will be converted to double precision. Long-double precision inputs are not supported. - To get an output with a complex datatype, consider using the related function - numpy.fft.rfft.- Examples - >>> from scipy.fftpack import fft, rfft >>> a = [9, -9, 1, 3] >>> fft(a) array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j]) >>> rfft(a) array([ 4., 8., 12., 16.]) 
