scipy.cluster.hierarchy.fclusterdata¶
-
scipy.cluster.hierarchy.
fclusterdata
(X, t, criterion='inconsistent', metric='euclidean', depth=2, method='single', R=None)[source]¶ Cluster observation data using a given metric.
Clusters the original observations in the n-by-m data matrix X (n observations in m dimensions), using the euclidean distance metric to calculate distances between original observations, performs hierarchical clustering using the single linkage algorithm, and forms flat clusters using the inconsistency method with t as the cut-off threshold.
A one-dimensional array
T
of lengthn
is returned.T[i]
is the index of the flat cluster to which the original observationi
belongs.Parameters: - X : (N, M) ndarray
N by M data matrix with N observations in M dimensions.
- t : float
The threshold to apply when forming flat clusters.
- criterion : str, optional
Specifies the criterion for forming flat clusters. Valid values are ‘inconsistent’ (default), ‘distance’, or ‘maxclust’ cluster formation algorithms. See
fcluster
for descriptions.- metric : str, optional
The distance metric for calculating pairwise distances. See
distance.pdist
for descriptions and linkage to verify compatibility with the linkage method.- depth : int, optional
The maximum depth for the inconsistency calculation. See
inconsistent
for more information.- method : str, optional
The linkage method to use (single, complete, average, weighted, median centroid, ward). See
linkage
for more information. Default is “single”.- R : ndarray, optional
The inconsistency matrix. It will be computed if necessary if it is not passed.
Returns: - fclusterdata : ndarray
A vector of length n. T[i] is the flat cluster number to which original observation i belongs.
See also
scipy.spatial.distance.pdist
- pairwise distance metrics
Notes
This function is similar to the MATLAB function
clusterdata
.