scipy.stats.vonmises¶
-
scipy.stats.
vonmises
= <scipy.stats._continuous_distns.vonmises_gen object>[source]¶ A Von Mises continuous random variable.
As an instance of the
rv_continuous
class,vonmises
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.See also
vonmises_line
- The same distribution, defined on a [-pi, pi] segment of the real line.
Notes
If x is not in range or loc is not in range it assumes they are angles and converts them to [-pi, pi] equivalents.
The probability density function for
vonmises
is:\[f(x, \kappa) = \frac{ \exp(\kappa \cos(x)) }{ 2 \pi I[0](\kappa) }\]for \(-\pi \le x \le \pi\), \(\kappa > 0\).
vonmises
takes \(\kappa\) as a shape parameter.The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,vonmises.pdf(x, kappa, loc, scale)
is identically equivalent tovonmises.pdf(y, kappa) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import vonmises >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> kappa = 3.99 >>> mean, var, skew, kurt = vonmises.stats(kappa, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(vonmises.ppf(0.01, kappa), ... vonmises.ppf(0.99, kappa), 100) >>> ax.plot(x, vonmises.pdf(x, kappa), ... 'r-', lw=5, alpha=0.6, label='vonmises pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = vonmises(kappa) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = vonmises.ppf([0.001, 0.5, 0.999], kappa) >>> np.allclose([0.001, 0.5, 0.999], vonmises.cdf(vals, kappa)) True
Generate random numbers:
>>> r = vonmises.rvs(kappa, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(kappa, loc=0, scale=1, size=1, random_state=None)
Random variates. pdf(x, kappa, loc=0, scale=1)
Probability density function. logpdf(x, kappa, loc=0, scale=1)
Log of the probability density function. cdf(x, kappa, loc=0, scale=1)
Cumulative distribution function. logcdf(x, kappa, loc=0, scale=1)
Log of the cumulative distribution function. sf(x, kappa, loc=0, scale=1)
Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, kappa, loc=0, scale=1)
Log of the survival function. ppf(q, kappa, loc=0, scale=1)
Percent point function (inverse of cdf
— percentiles).isf(q, kappa, loc=0, scale=1)
Inverse survival function (inverse of sf
).moment(n, kappa, loc=0, scale=1)
Non-central moment of order n stats(kappa, loc=0, scale=1, moments='mv')
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(kappa, loc=0, scale=1)
(Differential) entropy of the RV. fit(data, kappa, loc=0, scale=1)
Parameter estimates for generic data. expect(func, args=(kappa,), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution. median(kappa, loc=0, scale=1)
Median of the distribution. mean(kappa, loc=0, scale=1)
Mean of the distribution. var(kappa, loc=0, scale=1)
Variance of the distribution. std(kappa, loc=0, scale=1)
Standard deviation of the distribution. interval(alpha, kappa, loc=0, scale=1)
Endpoints of the range that contains alpha percent of the distribution