scipy.stats.describe¶
-
scipy.stats.
describe
(a, axis=0, ddof=1, bias=True, nan_policy='propagate')[source]¶ Compute several descriptive statistics of the passed array.
Parameters: a : array_like
Input data.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0. If None, compute over the whole array a.
ddof : int, optional
Delta degrees of freedom (only for variance). Default is 1.
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected for statistical bias.
nan_policy : {‘propagate’, ‘raise’, ‘omit’}, optional
Defines how to handle when input contains nan. ‘propagate’ returns nan, ‘raise’ throws an error, ‘omit’ performs the calculations ignoring nan values. Default is ‘propagate’.
Returns: nobs : int or ndarray of ints
Number of observations (length of data along axis). When ‘omit’ is chosen as nan_policy, each column is counted separately.
minmax: tuple of ndarrays or floats
Minimum and maximum value of data array.
mean : ndarray or float
Arithmetic mean of data along axis.
variance : ndarray or float
Unbiased variance of the data along axis, denominator is number of observations minus one.
skewness : ndarray or float
Skewness, based on moment calculations with denominator equal to the number of observations, i.e. no degrees of freedom correction.
kurtosis : ndarray or float
Kurtosis (Fisher). The kurtosis is normalized so that it is zero for the normal distribution. No degrees of freedom are used.
Examples
>>> from scipy import stats >>> a = np.arange(10) >>> stats.describe(a) DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.1666666666666661, skewness=0.0, kurtosis=-1.2242424242424244) >>> b = [[1, 2], [3, 4]] >>> stats.describe(b) DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])), mean=array([ 2., 3.]), variance=array([ 2., 2.]), skewness=array([ 0., 0.]), kurtosis=array([-2., -2.]))