scipy.stats.crystalball¶
-
scipy.stats.
crystalball
= <scipy.stats._continuous_distns.crystalball_gen object>[source]¶ Crystalball distribution
As an instance of the
rv_continuous
class,crystalball
object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.Notes
The probability density function for
crystalball
is:\[\begin{split}f(x, \beta, m) = \begin{cases} N \exp(-x^2 / 2), &\text{for } x > -\beta\\ N A (B - x)^{-m} &\text{for } x \le -\beta \end{cases}\end{split}\]where \(A = (m / |beta|)**n * exp(-beta**2 / 2)\), \(B = m/|beta| - |beta|\) and \(N\) is a normalisation constant.
crystalball
takes \(\beta\) and \(m\) as shape parameters. \(\beta\) defines the point where the pdf changes from a power-law to a gaussian distribution \(m\) is power of the power-law tail.References
[R628] “Crystal Ball Function”, https://en.wikipedia.org/wiki/Crystal_Ball_function The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,crystalball.pdf(x, beta, m, loc, scale)
is identically equivalent tocrystalball.pdf(y, beta, m) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import crystalball >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> beta, m = 2, 3 >>> mean, var, skew, kurt = crystalball.stats(beta, m, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(crystalball.ppf(0.01, beta, m), ... crystalball.ppf(0.99, beta, m), 100) >>> ax.plot(x, crystalball.pdf(x, beta, m), ... 'r-', lw=5, alpha=0.6, label='crystalball pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = crystalball(beta, m) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = crystalball.ppf([0.001, 0.5, 0.999], beta, m) >>> np.allclose([0.001, 0.5, 0.999], crystalball.cdf(vals, beta, m)) True
Generate random numbers:
>>> r = crystalball.rvs(beta, m, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(beta, m, loc=0, scale=1, size=1, random_state=None)
Random variates. pdf(x, beta, m, loc=0, scale=1)
Probability density function. logpdf(x, beta, m, loc=0, scale=1)
Log of the probability density function. cdf(x, beta, m, loc=0, scale=1)
Cumulative distribution function. logcdf(x, beta, m, loc=0, scale=1)
Log of the cumulative distribution function. sf(x, beta, m, loc=0, scale=1)
Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, beta, m, loc=0, scale=1)
Log of the survival function. ppf(q, beta, m, loc=0, scale=1)
Percent point function (inverse of cdf
— percentiles).isf(q, beta, m, loc=0, scale=1)
Inverse survival function (inverse of sf
).moment(n, beta, m, loc=0, scale=1)
Non-central moment of order n stats(beta, m, loc=0, scale=1, moments='mv')
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(beta, m, loc=0, scale=1)
(Differential) entropy of the RV. fit(data, beta, m, loc=0, scale=1)
Parameter estimates for generic data. expect(func, args=(beta, m), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution. median(beta, m, loc=0, scale=1)
Median of the distribution. mean(beta, m, loc=0, scale=1)
Mean of the distribution. var(beta, m, loc=0, scale=1)
Variance of the distribution. std(beta, m, loc=0, scale=1)
Standard deviation of the distribution. interval(alpha, beta, m, loc=0, scale=1)
Endpoints of the range that contains alpha percent of the distribution