# scipy.signal.invresz¶

scipy.signal.invresz(r, p, k, tol=0.001, rtype='avg')[source]

Compute b(z) and a(z) from partial fraction expansion.

If M is the degree of numerator b and N the degree of denominator a:

        b(z)     b + b z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------
a(z)     a + a z**(-1) + ... + a[N] z**(-N)


then the partial-fraction expansion H(z) is defined as:

        r                   r[-1]
= --------------- + ... + ---------------- + k + kz**(-1) ...
(1-pz**(-1))         (1-p[-1]z**(-1))


If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like:

     r[i]              r[i+1]                    r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n


This function is used for polynomials in negative powers of z, such as digital filters in DSP. For positive powers, use invres.

Parameters: r : array_like Residues. p : array_like Poles. k : array_like Coefficients of the direct polynomial term. tol : float, optional The tolerance for two roots to be considered equal. Default is 1e-3. rtype : {‘max’, ‘min, ‘avg’}, optional How to determine the returned root if multiple roots are within tol of each other. ‘max’: pick the maximum of those roots. ‘min’: pick the minimum of those roots. ‘avg’: take the average of those roots. b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients.

#### Previous topic

scipy.signal.invres