scipy.optimize.bisect¶
-
scipy.optimize.
bisect
(f, a, b, args=(), xtol=2e-12, rtol=8.8817841970012523e-16, maxiter=100, full_output=False, disp=True)[source]¶ Find root of a function within an interval.
Basic bisection routine to find a zero of the function f between the arguments a and b. f(a) and f(b) cannot have the same signs. Slow but sure.
Parameters: f : function
Python function returning a number. f must be continuous, and f(a) and f(b) must have opposite signs.
a : number
One end of the bracketing interval [a,b].
b : number
The other end of the bracketing interval [a,b].
xtol : number, optional
The computed root
x0
will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol)
, wherex
is the exact root. The parameter must be nonnegative.rtol : number, optional
The computed root
x0
will satisfynp.allclose(x, x0, atol=xtol, rtol=rtol)
, wherex
is the exact root. The parameter cannot be smaller than its default value of4*np.finfo(float).eps
.maxiter : number, optional
if convergence is not achieved in maxiter iterations, an error is raised. Must be >= 0.
args : tuple, optional
containing extra arguments for the function f. f is called by
apply(f, (x)+args)
.full_output : bool, optional
If full_output is False, the root is returned. If full_output is True, the return value is
(x, r)
, where x is the root, and r is a RootResults object.disp : bool, optional
If True, raise RuntimeError if the algorithm didn’t converge.
Returns: x0 : float
Zero of f between a and b.
r : RootResults (present if
full_output = True
)Object containing information about the convergence. In particular,
r.converged
is True if the routine converged.See also
brentq
,brenth
,bisect
,newton
fixed_point
- scalar fixed-point finder
fsolve
- n-dimensional root-finding
Examples
>>> def f(x): ... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.bisect(f, 0, 2) >>> root 1.0
>>> root = optimize.bisect(f, -2, 0) >>> root -1.0