scipy.ndimage.mean¶

scipy.ndimage.
mean
(input, labels=None, index=None)[source]¶ Calculate the mean of the values of an array at labels.
Parameters: input : array_like
Array on which to compute the mean of elements over distinct regions.
labels : array_like, optional
Array of labels of same shape, or broadcastable to the same shape as input. All elements sharing the same label form one region over which the mean of the elements is computed.
index : int or sequence of ints, optional
Labels of the objects over which the mean is to be computed. Default is None, in which case the mean for all values where label is greater than 0 is calculated.
Returns: out : list
Sequence of same length as index, with the mean of the different regions labeled by the labels in index.
See also
ndimage.variance
,ndimage.standard_deviation
,ndimage.minimum
,ndimage.maximum
,ndimage.sum
,ndimage.label
Examples
>>> from scipy import ndimage >>> a = np.arange(25).reshape((5,5)) >>> labels = np.zeros_like(a) >>> labels[3:5,3:5] = 1 >>> index = np.unique(labels) >>> labels array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 1, 1]]) >>> index array([0, 1]) >>> ndimage.mean(a, labels=labels, index=index) [10.285714285714286, 21.0]