scipy.linalg.interpolative.interp_decomp¶
-
scipy.linalg.interpolative.
interp_decomp
(A, eps_or_k, rand=True)[source]¶ Compute ID of a matrix.
An ID of a matrix A is a factorization defined by a rank k, a column index array idx, and interpolation coefficients proj such that:
numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]
The original matrix can then be reconstructed as:
numpy.hstack([A[:,idx[:k]], numpy.dot(A[:,idx[:k]], proj)] )[:,numpy.argsort(idx)]
or via the routine
reconstruct_matrix_from_id
. This can equivalently be written as:numpy.dot(A[:,idx[:k]], numpy.hstack([numpy.eye(k), proj]) )[:,np.argsort(idx)]
in terms of the skeleton and interpolation matrices:
B = A[:,idx[:k]]
and:
P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]
respectively. See also
reconstruct_interp_matrix
andreconstruct_skel_matrix
.The ID can be computed to any relative precision or rank (depending on the value of eps_or_k). If a precision is specified (eps_or_k < 1), then this function has the output signature:
k, idx, proj = interp_decomp(A, eps_or_k)
Otherwise, if a rank is specified (eps_or_k >= 1), then the output signature is:
idx, proj = interp_decomp(A, eps_or_k)
Parameters: A :
numpy.ndarray
orscipy.sparse.linalg.LinearOperator
with rmatvecMatrix to be factored
eps_or_k : float or int
Relative error (if eps_or_k < 1) or rank (if eps_or_k >= 1) of approximation.
rand : bool, optional
Whether to use random sampling if A is of type
numpy.ndarray
(randomized algorithms are always used if A is of typescipy.sparse.linalg.LinearOperator
).Returns: k : int
Rank required to achieve specified relative precision if eps_or_k < 1.
idx :
numpy.ndarray
Column index array.
proj :
numpy.ndarray
Interpolation coefficients.