A Weibull maximum continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array-like
q : array-like
c : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = weibull_max(c, loc=0, scale=1) :
|
---|
Notes
A Weibull maximum distribution (also called a Frechet (left) distribution)
weibull_max.pdf(x,c) = c * (-x)**(c-1) * exp(-(-x)**c) for x < 0, c > 0.
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = weibull_max.numargs
>>> [ c ] = [0.9,] * numargs
>>> rv = weibull_max(c)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = weibull_max.cdf(x, c)
>>> h = plt.semilogy(np.abs(x - weibull_max.ppf(prb, c)) + 1e-20)
Random number generation
>>> R = weibull_max.rvs(c, size=100)
Methods
rvs(c, loc=0, scale=1, size=1) | Random variates. |
pdf(x, c, loc=0, scale=1) | Probability density function. |
cdf(x, c, loc=0, scale=1) | Cumulative density function. |
sf(x, c, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). |
ppf(q, c, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, c, loc=0, scale=1) | Inverse survival function (inverse of sf). |
stats(c, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(c, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data, c, loc=0, scale=1) | Parameter estimates for generic data. |