A Tukey-Lambda continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array-like
q : array-like
lam : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = tukeylambda(lam, loc=0, scale=1) :
|
---|
Notes
Tukey-Lambda distribution
A flexible distribution ranging from Cauchy (lam=-1) to logistic (lam=0.0) to approx Normal (lam=0.14) to u-shape (lam = 0.5) to Uniform from -1 to 1 (lam = 1)
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = tukeylambda.numargs
>>> [ lam ] = [0.9,] * numargs
>>> rv = tukeylambda(lam)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = tukeylambda.cdf(x, lam)
>>> h = plt.semilogy(np.abs(x - tukeylambda.ppf(prb, lam)) + 1e-20)
Random number generation
>>> R = tukeylambda.rvs(lam, size=100)
Methods
rvs(lam, loc=0, scale=1, size=1) | Random variates. |
pdf(x, lam, loc=0, scale=1) | Probability density function. |
cdf(x, lam, loc=0, scale=1) | Cumulative density function. |
sf(x, lam, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). |
ppf(q, lam, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, lam, loc=0, scale=1) | Inverse survival function (inverse of sf). |
stats(lam, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(lam, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data, lam, loc=0, scale=1) | Parameter estimates for generic data. |