scipy.stats.mstats.mquantiles

scipy.stats.mstats.mquantiles(a, prob=[, 0.25, 0.5, 0.75], alphap=0.40000000000000002, betap=0.40000000000000002, axis=None, limit=())

Computes empirical quantiles for a data array.

Samples quantile are defined by Q(p) = (1-g).x[i] +g.x[i+1], where x[j] is the *j*th order statistic, and i = (floor(n*p+m)), m=alpha+p*(1-alpha-beta) and g = n*p + m - i.

Typical values of (alpha,beta) are:
  • (0,1) : p(k) = k/n : linear interpolation of cdf (R, type 4)
  • (.5,.5) : p(k) = (k+1/2.)/n : piecewise linear function (R, type 5)
  • (0,0) : p(k) = k/(n+1) : (R type 6)
  • (1,1) : p(k) = (k-1)/(n-1). In this case, p(k) = mode[F(x[k])]. That’s R default (R type 7)
  • (1/3,1/3): p(k) = (k-1/3)/(n+1/3). Then p(k) ~ median[F(x[k])]. The resulting quantile estimates are approximately median-unbiased regardless of the distribution of x. (R type 8)
  • (3/8,3/8): p(k) = (k-3/8)/(n+1/4). Blom. The resulting quantile estimates are approximately unbiased if x is normally distributed (R type 9)
  • (.4,.4) : approximately quantile unbiased (Cunnane)
  • (.35,.35): APL, used with PWM
Parameters :

a : array_like

Input data, as a sequence or array of dimension at most 2.

prob : array_like, optional

List of quantiles to compute.

alpha : float, optional

Plotting positions parameter, default is 0.4.

beta : float, optional

Plotting positions parameter, default is 0.4.

axis : int, optional

Axis along which to perform the trimming. If None (default), the input array is first flattened.

limit : tuple

Tuple of (lower, upper) values. Values of a outside this closed interval are ignored.

Returns :

quants : MaskedArray

An array containing the calculated quantiles.

Examples

>>> from scipy.stats.mstats import mquantiles
>>> a = np.array([6., 47., 49., 15., 42., 41., 7., 39., 43., 40., 36.])
>>> mquantiles(a)
array([ 19.2,  40. ,  42.8])

Using a 2D array, specifying axis and limit.

>>> data = np.array([[   6.,    7.,    1.],
                     [  47.,   15.,    2.],
                     [  49.,   36.,    3.],
                     [  15.,   39.,    4.],
                     [  42.,   40., -999.],
                     [  41.,   41., -999.],
                     [   7., -999., -999.],
                     [  39., -999., -999.],
                     [  43., -999., -999.],
                     [  40., -999., -999.],
                     [  36., -999., -999.]])
>>> mquantiles(data, axis=0, limit=(0, 50))
array([[ 19.2 ,  14.6 ,   1.45],
       [ 40.  ,  37.5 ,   2.5 ],
       [ 42.8 ,  40.05,   3.55]])
>>> data[:, 2] = -999.
>>> mquantiles(data, axis=0, limit=(0, 50))
masked_array(data =
 [[19.2 14.6 --]
 [40.0 37.5 --]
 [42.8 40.05 --]],
             mask =
 [[False False  True]
  [False False  True]
  [False False  True]],
       fill_value = 1e+20)

Previous topic

scipy.stats.mstats.moment

Next topic

scipy.stats.mstats.msign

This Page