An inverse normal continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters : | x : array-like
q : array-like
mu : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : str, optional
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = invnorm(mu, loc=0, scale=1) :
|
---|
Notes
Inverse normal distribution
NOTE: invnorm will be renamed to invgauss after scipy 0.9
invnorm.pdf(x,mu) = 1/sqrt(2*pi*x**3) * exp(-(x-mu)**2/(2*x*mu**2)) for x > 0.
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = invnorm.numargs
>>> [ mu ] = [0.9,] * numargs
>>> rv = invnorm(mu)
Display frozen pdf
>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = invnorm.cdf(x, mu)
>>> h = plt.semilogy(np.abs(x - invnorm.ppf(prb, mu)) + 1e-20)
Random number generation
>>> R = invnorm.rvs(mu, size=100)
Methods
rvs(mu, loc=0, scale=1, size=1) | Random variates. |
pdf(x, mu, loc=0, scale=1) | Probability density function. |
cdf(x, mu, loc=0, scale=1) | Cumulative density function. |
sf(x, mu, loc=0, scale=1) | Survival function (1-cdf — sometimes more accurate). |
ppf(q, mu, loc=0, scale=1) | Percent point function (inverse of cdf — percentiles). |
isf(q, mu, loc=0, scale=1) | Inverse survival function (inverse of sf). |
stats(mu, loc=0, scale=1, moments=’mv’) | Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). |
entropy(mu, loc=0, scale=1) | (Differential) entropy of the RV. |
fit(data, mu, loc=0, scale=1) | Parameter estimates for generic data. |