This is documentation for an old release of SciPy (version 0.9.0). Read this page in the documentation of the latest stable release (version 1.15.1).

scipy.stats.exponweib

scipy.stats.exponweib

An exponentiated Weibull continuous random variable.

Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:

Parameters :

x : array-like

quantiles

q : array-like

lower or upper tail probability

a, c : array-like

shape parameters

loc : array-like, optional

location parameter (default=0)

scale : array-like, optional

scale parameter (default=1)

size : int or tuple of ints, optional

shape of random variates (default computed from input arguments )

moments : str, optional

composed of letters [‘mvsk’] specifying which moments to compute where ‘m’ = mean, ‘v’ = variance, ‘s’ = (Fisher’s) skew and ‘k’ = (Fisher’s) kurtosis. (default=’mv’)

Alternatively, the object may be called (as a function) to fix the shape, :

location, and scale parameters returning a “frozen” continuous RV object: :

rv = exponweib(a, c, loc=0, scale=1) :

  • Frozen RV object with the same methods but holding the given shape, location, and scale fixed.

Notes

Exponentiated Weibull distribution

exponweib.pdf(x,a,c) = a*c*(1-exp(-x**c))**(a-1)*exp(-x**c)*x**(c-1) for x > 0, a, c > 0.

Examples

>>> import matplotlib.pyplot as plt
>>> numargs = exponweib.numargs
>>> [ a, c ] = [0.9,] * numargs
>>> rv = exponweib(a, c)

Display frozen pdf

>>> x = np.linspace(0, np.minimum(rv.dist.b, 3))
>>> h = plt.plot(x, rv.pdf(x))

Check accuracy of cdf and ppf

>>> prb = exponweib.cdf(x, a, c)
>>> h = plt.semilogy(np.abs(x - exponweib.ppf(prb, a, c)) + 1e-20)

Random number generation

>>> R = exponweib.rvs(a, c, size=100)

(Source code)

Methods

rvs(a, c, loc=0, scale=1, size=1) Random variates.
pdf(x, a, c, loc=0, scale=1) Probability density function.
cdf(x, a, c, loc=0, scale=1) Cumulative density function.
sf(x, a, c, loc=0, scale=1) Survival function (1-cdf — sometimes more accurate).
ppf(q, a, c, loc=0, scale=1) Percent point function (inverse of cdf — percentiles).
isf(q, a, c, loc=0, scale=1) Inverse survival function (inverse of sf).
stats(a, c, loc=0, scale=1, moments=’mv’) Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
entropy(a, c, loc=0, scale=1) (Differential) entropy of the RV.
fit(data, a, c, loc=0, scale=1) Parameter estimates for generic data.

Previous topic

scipy.stats.expon

Next topic

scipy.stats.exponpow

This Page