Calculate the histogram of the values of an array, optionally at labels.
Histogram calculates the frequency of values in an array within bins determined by min, max, and bins. Labels and index can limit the scope of the histogram to specified sub-regions within the array.
Parameters : | input : array_like
min, max : int
bins : int
labels : array_like or None, optional
index : int, sequence of int, or None, optional
|
---|---|
Returns : | hist : ndarray
|
Examples
>>> a = np.array([[ 0. , 0.2146, 0.5962, 0. ],
[ 0. , 0.7778, 0. , 0. ],
[ 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0.7181, 0.2787],
[ 0. , 0. , 0.6573, 0.3094]])
>>> from scipy import ndimage
>>> ndimage.measurements.histogram(a, 0, 1, 10)
array([13, 0, 2, 1, 0, 1, 1, 2, 0, 0])
With labels and no indices, non-zero elements are counted:
>>> lbl, nlbl = ndimage.label(a)
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl)
array([0, 0, 2, 1, 0, 1, 1, 2, 0, 0])
Indices can be used to count only certain objects:
>>> ndimage.measurements.histogram(a, 0, 1, 10, lbl, 2)
array([0, 0, 1, 1, 0, 0, 1, 1, 0, 0])