Map the input array to new coordinates by interpolation.
The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order.
The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the array along the first axis are the coordinates in the input array at which the output value is found.
Parameters : | input : ndarray
coordinates : array_like
output : ndarray or dtype, optional
order : int, optional
mode : str, optional
cval : scalar, optional
prefilter : bool, optional
|
---|---|
Returns : | return_value : ndarray
|
See also
Examples
>>> import scipy.ndimage
>>> a = np.arange(12.).reshape((4, 3))
>>> a
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.],
[ 9., 10., 11.]])
>>> sp.ndimage.map_coordinates(a, [[0.5, 2], [0.5, 1]], order=1)
[ 2. 7.]
Above, the interpolated value of a[0.5, 0.5] gives output[0], while a[2, 1] is output[1].
>>> inds = np.array([[0.5, 2], [0.5, 4]])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=-33.3)
array([ 2. , -33.3])
>>> sp.ndimage.map_coordinates(a, inds, order=1, mode='nearest')
array([ 2., 8.])
>>> sp.ndimage.map_coordinates(a, inds, order=1, cval=0, output=bool)
array([ True, False], dtype=bool