Functions which are common and require SciPy Base and Level 1 SciPy (special, linalg)
Functions
arange([dtype]) | Return evenly spaced values within a given interval. |
array(object[, dtype, copy, order, subok, ndmin]) | Create an array. |
asarray(a[, dtype, order]) | Convert the input to an array. |
central_diff_weights(Np[, ndiv]) | Return weights for an Np-point central derivative of order ndiv |
comb(N, k[, exact]) | The number of combinations of N things taken k at a time. |
derivative(func, x0[, dx, n, args, order]) | Find the n-th derivative of a function at point x0. |
dot(a, b[, out]) | Dot product of two arrays. |
extract(condition, arr) | Return the elements of an array that satisfy some condition. |
eye(N[, M, k, dtype]) | Return a 2-D array with ones on the diagonal and zeros elsewhere. |
factorial(n[, exact]) | The factorial function, n! = special.gamma(n+1). |
factorial2(n[, exact]) | Double factorial. |
factorialk(n, k[, exact]) | n(!!...!) = multifactorial of order k |
hstack(tup) | Stack arrays in sequence horizontally (column wise). |
lena() | Get classic image processing example image, Lena, at 8-bit grayscale |
pade(an, m) | Given Taylor series coefficients in an, return a Pade approximation to |
place(arr, mask, vals) | Change elements of an array based on conditional and input values. |
product(a[, axis, dtype, out]) | Return the product of array elements over a given axis. |
where(condition, x) | Return elements, either from x or y, depending on condition. |
zeros(shape[, dtype, order]) | Return a new array of given shape and type, filled with zeros. |
Classes
poly1d(c_or_r[, r, variable]) | A one-dimensional polynomial class. |