Compute QR decomposition of a matrix.
Calculate the decomposition :lm:`A = Q R` where Q is unitary/orthogonal and R upper triangular.
Parameters : | a : array, shape (M, N)
overwrite_a : bool, optional
lwork : int, optional
mode : {‘full’, ‘r’, ‘economic’}
|
---|---|
Returns : | Q : double or complex ndarray
R : double or complex ndarray
Raises LinAlgError if decomposition fails : |
Notes
This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, and zungqr.
If mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with K=min(M,N).
Examples
>>> from scipy import random, linalg, dot
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))