This is documentation for an old release of SciPy (version 0.9.0). Read this page in the documentation of the latest stable release (version 1.15.0).

scipy.interpolate.SmoothBivariateSpline

class scipy.interpolate.SmoothBivariateSpline(x, y, z, w=None, bbox=[, None, None, None, None], kx=3, ky=3, s=None, eps=None)

Smooth bivariate spline approximation.

Parameters :

x, y, z : array_like

1-D sequences of data points (order is not important).

w : array_lie, optional

Positive 1-D sequence of weights.

bbox : array_like, optional

Sequence of length 4 specifying the boundary of the rectangular approximation domain. By default, bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)].

kx, ky : ints, optional

Degrees of the bivariate spline. Default is 3.

s : float, optional

Positive smoothing factor defined for estimation condition: sum((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0) <= s Default s=len(w) which should be a good value if 1/w[i] is an estimate of the standard deviation of z[i].

eps : float, optional

A threshold for determining the effective rank of an over-determined linear system of equations. eps should have a value between 0 and 1, the default is 1e-16.

See also

bisplrep, bisplev

UnivariateSpline
a similar class for univariate spline interpolation
LSQUnivariateSpline
to create a BivariateSpline using weighted

Notes

The length of x, y and z should be at least (kx+1) * (ky+1).

Methods

ev
get_coeffs
get_knots
get_residual
integral

This Page