One-dimensional interpolating spline for a given set of data points.
Fits a spline y=s(x) of degree k to the provided x, y data. Spline function passes through all provided points. Equivalent to UnivariateSpline with s=0.
Parameters : | x : array_like
y : array_like
w : array_like, optional
bbox : array_like, optional
k : int, optional
|
---|
See also
Notes
The number of data points must be larger than the spline degree k.
Examples
>>> from numpy import linspace,exp
>>> from numpy.random import randn
>>> from scipy.interpolate import UnivariateSpline
>>> x = linspace(-3, 3, 100)
>>> y = exp(-x**2) + randn(100)/10
>>> s = UnivariateSpline(x, y, s=1)
>>> xs = linspace(-3, 3, 1000)
>>> ys = s(xs)
xs,ys is now a smoothed, super-sampled version of the noisy gaussian x,y
Methods
derivatives | |
get_coeffs | |
get_knots | |
get_residual | |
integral | |
roots | |
set_smoothing_factor |