Anderson-Darling test for data coming from a particular distribution
The Anderson-Darling test is a modification of the Kolmogorov- Smirnov test kstest_ for the null hypothesis that a sample is drawn from a population that follows a particular distribution. For the Anderson-Darling test, the critical values depend on which distribution is being tested against. This function works for normal, exponential, logistic, or Gumbel (Extreme Value Type I) distributions.
Parameters : | x : array_like
dist : {‘norm’,’expon’,’logistic’,’gumbel’,’extreme1’}, optional
|
---|---|
Returns : | A2 : float
critical : list
sig : list
|
Notes
Critical values provided are for the following significance levels:
If A2 is larger than these critical values then for the corresponding significance level, the null hypothesis that the data come from the chosen distribution can be rejected.
References
[R37] | http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm |
[R38] | Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Vol. 69, pp. 730-737. |
[R39] | Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters, Annals of Statistics, Vol. 4, pp. 357-369. |
[R40] | Stephens, M. A. (1977). Goodness of Fit for the Extreme Value Distribution, Biometrika, Vol. 64, pp. 583-588. |
[R41] | Stephens, M. A. (1977). Goodness of Fit with Special Reference to Tests for Exponentiality , Technical Report No. 262, Department of Statistics, Stanford University, Stanford, CA. |
[R42] | Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function, Biometrika, Vol. 66, pp. 591-595. |