A sparse matrix in COOrdinate format.
Also known as the ‘ijv’ or ‘triplet’ format.
Where A[ij[0][k], ij[1][k] = data[k]. When shape is not specified, it is inferred from the index arrays
Notes
Examples
>>> from scipy.sparse import *
>>> from scipy import *
>>> coo_matrix( (3,4), dtype=int8 ).todense()
matrix([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = array([0,3,1,0])
>>> col = array([0,3,1,2])
>>> data = array([4,5,7,9])
>>> coo_matrix( (data,(row,col)), shape=(4,4) ).todense()
matrix([[4, 0, 9, 0],
[0, 7, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 5]])
>>> # example with duplicates
>>> row = array([0,0,1,3,1,0,0])
>>> col = array([0,2,1,3,1,0,0])
>>> data = array([1,1,1,1,1,1,1])
>>> coo_matrix( (data,(row,col)), shape=(4,4)).todense()
matrix([[3, 0, 1, 0],
[0, 2, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 1]])
Methods
| asformat | |
| asfptype | |
| astype | |
| conj | |
| conjugate | |
| copy | Generic (shallow and deep) copying operations. |
| diagonal | |
| dot | |
| getH | |
| get_shape | |
| getcol | |
| getdata | |
| getformat | |
| getmaxprint | |
| getnnz | |
| getrow | |
| listprint | |
| matmat | |
| matvec | |
| mean | |
| multiply | |
| nonzero | |
| reshape | |
| rmatvec | |
| rowcol | |
| save | |
| set_shape | |
| setdiag | |
| sum | |
| toarray | |
| tobsr | |
| tocoo | |
| tocsc | |
| tocsr | |
| todense | |
| todia | |
| todok | |
| tolil | |
| transpose |