scipy.signal.residuez

scipy.signal.residuez(b, a, tol=0.001, rtype='avg')

Compute partial-fraction expansion of b(z) / a(z).

If M = len(b) and N = len(a)

b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
H(z) = —— = ———————————————-

a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)

r[0] r[-1]
= ————— + ... + —————- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))

If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like

r[i] r[i+1] r[i+n-1]

————– + —————— + ... + —————— (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n

See also: invresz, poly, polyval, unique_roots

Previous topic

scipy.signal.residue

Next topic

scipy.signal.invres

This Page